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KOKKOQ Greek: “granule” or “grain” ; like grains of sand on a beach




Part 1: Kokkos’ Back-ends )
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= Map algorithms and arrays to underlying NGP node architecture

= Productive, performance-portable abstractions / programming model
= Map onto architecture’s best programming mechanism: CUDA, OpenMP, ...

= Abstractions and programming mechanisms are evolving

Part 2: Kokkos’ Task-DAG Pattern/Policy

= Previously only data parallel patterns / policies
= parallel_for, parallel_reduce, parallel_scan patterns over range policy [0..N)
= Optional hierarchical thread team policy to maximize available parallelism
= New directed acyclic graph of tasks parallel patterns / policies

= Tasks: Can be heterogeneous collection of parallel computations

= DAG: Tasks may have acyclic execute-after dependences
= Dynamic: Tasks can be spawned within executing tasks




FY17-18 evolution of Kokkos’ Back-ends ) Netona
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= OpenMP for CPU and KNL+

= Require OpenMP 4+ for proper granularity of thread-binding
= Compatibility / interoperability with nested parallel regions
= Continue optional use of hwloc to choose performant sizes for nesting
= Leverage matured OpenMP 4+ features
= Scheduling, loop collapse, customized reductions, ...
= Strategy for performant AMT / Kokkos / OpenMP interoperability
= Outcome of collaboration with U-Utah’s “Uintah” framework

= CUDA 9+ for NVIDIA GPU

= Proper collectives and controls provided by CUDA thread groups
= Address warp divergence bug

= Sub-block thread teams to improve flexibility of hierarchical parallelism
= Best realized on Volta architecture

= Full host-device lambda capability with C++17 capture: [=,*this]



FY17-18 evolution of Kokkos’ Back-ends i) Neona
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= C++11 std::thread for CPU and KNL+
= Portability to OS/runtime that does not OpenMP (e.g., Windows)
= Performance comparison with OpenMP

= Research thread synchronization and collectives, runtimes

= Backend for ARM (CPU)

= OS/runtime/compiler stack? tbd
= Best thread parallel mechanism: OpenMP, std::thread, ...? tbd

= ROCm for AMD GPU; developed by AMD
= OpenMP 4.5 offload for GPU
= Clang-CUDA for GPU




Directed Acyclic Graph (DAG) of Tasks i) s
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= Pattern
= Parallel execution of computations (tasks)

= That have “execute after” dependences
= Policy
= Scheduling ready tasks
= Updating dependences as tasks complete
= Dynamic and Heterogeneous Task-DAG
= Manage tasks’ lifecycle — tasks spawned within executing tasks
= Manage tasks’ memory — task and workspace allocated/deallocated
= Each task may be a different function (C++ closure)
= Static and Homogeneous Work-DAG

= Single function, similar to data parallel patterns

= Predefined DAG of "execute after” work indices: { k executes-after{i,j, ... } }




Task-DAG Motivating Use Cases )

Multifrontal Cholesky factorization of sparse matrix
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Hybrid task parallelism: tree-parallel & BRI \ :
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Dynamic task-dag with memory constraints /4 \

Matrix computation is internally data parallel EXE
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Lead: Kyungjoo Kim / SNL

Triangle enumeration in social networks, highly irregular graphs

Discover triangles within the graph
Compute statistics on those triangles 3 K1

Triangles are an intermediate result
that do not need to be saved / stored 4
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~ Challenge: memory “high water mark”
Lead: Michael Wolf / SNL




Work-DAG Motivating Use Case ) eons
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= Neutral Particle Transport via Sweeps
= Tycho2 mini-application (https://github.com/lanl/tycho2)

= “A neutral particle transport mini-app to study performance of sweeps on
unstructured, 3D tetrahedral meshes.”

= Lead: Kris Garrett / LANL

= Tycho2 version using Kokkos Work-DAG
= All angle sweeps through unstructured mesh in a single DAG
= Work index: K = angle_index * number_elements + element_index
= Angle sweeps define work “execute after” dependences
= Running on CPU and KNL - as of July 27, 2017
= Next steps:
= Port data structures to Kokkos for performance portability to GPU

= Performance evaluation and improvements



Hierarchical, Thread Team Parallelism ) v
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= Shared functionality with hierarchical data-data parallelism
= The same kernel (task) executed on ...

= OpenMP: League of Teams of Threads
= Cuda: Grid of Blocks of Threads

= |nter-Team Parallelism (data or task)
= Threads within a team execute concurrently
= Data: each team executes the same computation
» Task: each team executes a different task

parallel_for

" |ntra-Team Parallelism (data)
= Nested parallel patterns: for, reduce, scan

parallel_reduce

(L
, A
= Mapping teams onto hardware

= CPU : team == hyperthreads sharing L1 cache’

= GPU : team == warp, for a modest degree of intra-team data parallelism




Dynamic Task DAG Challenges | e,

Laboratories

= A Dynamic DAG of Heterogeneous Functions (closures)
= Map functions onto a single thread or a thread team
= Scalable dynamic allocation / deallocation of tasks
= Scalable and low latency scheduling
= Scalable dynamic creation / completion of execute-after dependences

= GPU idiosyncrasies / constraints
» Non-blocking tasks, forced a beneficial “respawn” reconceptualization!
= Eliminate context switching overhead: stack, registers, ...
= Heterogeneous function pointers (CPU, GPU)
= Creating GPU tasks on the host and within tasks executing on the GPU

Bounded memory pool and scalable allocation/deallocation
= Non-coherent L1 caches



Scalable Memory Pool and Task Scheduler ) s,
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= Memory Pool
= Lock-free and low latency via atomic operations
= Large chunk of memory allocated in Kokkos memory space
= From which smaller blocks are allocated and deallocated

= Task Scheduler

= Memory pool for tasks’ dynamic memory
= Multiple prioritized ready queues
= Per-task execute-after waiting queues
» Each queue is a simple linked list of tasks
= Lock free push/pop via atomic operations
= Explicitly manage GPU non-coherent L1 cache

= Problem: dynamic allocation/deallocation across GPU processors not automically
observed by GPU L1 cache hardware

= Solution: explicitly manage via GPU programmable L1 cache, a.k.a. __shared__



Memory Pool Performance ) s,
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= Test Setup

= 10Mb pool comprised of 153 x 64k superblocks, min block size 32 bytes

= Allocations ranging between 32 and 128 bytes; average 80 bytes
[1] Allocate to N% ; [2] cyclically deallocate & allocate between N and 2/3 N
parallel_for: every index allocates ; cyclically deallocates & allocates

Measure allocate + deallocate operations / second (best of 10 trials)
= Deallocate much simpler and fewer operations than allocate
= Test Hardware: Pascal, Broadwell, Knights Landing
= Fully subscribe cores
= Every thread within every warp allocates & deallocates
= For reference, an “apples to oranges” comparison
= CUDA malloc / free on Pascal
= jemalloc on Knights Landing
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Fill 75% Fill 95% Cycle 75% Cycle 95%
blocks: 938,500 1,187,500
Pascal 79 M/s 74 M/s 287 M/s 244 M/s
Broadwell 13 M/s 13 M/s 46 M/s 49 M/s
Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s
apples to oranges comparison:

Pascal 3.5 M/s 2.9 M/s 15 M/s 12 M/s
using CUDA malloc
Knights Landing 379 M/s 4115 M/s
using jemalloc thread local caches, optimal blocking, NOT fixed pool size

= Memory pools have finite size with well-bounded scope

= Algorithms’ and data structures’ memory pools do not pollute (fragment)
each other’s memory




Scheduler Unit Test Performance ) s,
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= (silly) Fibonacci task-dag algorithm measures overhead
F(k) = F(k-1) + F(k-2)
F(k) cumulatively allocates/deallocates N tasks >> “high water mark”

= 1Mb pool comprised of 31 x 32k superblocks, min block size 32 bytes

= Fully subscribe cores; single thread Fibonacci task consumes entire GPU warp
= Real algorithms’ tasks have modest internal parallelism

= Measure tasks / second; compare to raw allocate + deallocate performance

F(21) F(23) Alloc/Dealloc
cumulative tasks: 53131 139102 (for comparison)
Pascal 1.2 M/s 1.3 M/s 144 M/s
Broadwell 0.98 M/s 1.1 M/s 24 M/s
Knights Landing 0.30 M/s 0.31 M/s 21 M/s




Tacho’s Sparse Cholesky Factorization ) i,
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= Multifrontal algorithm with bounded memory constraint
Kokkos task DAG + Kokkos memory pool for shared scratch memory

Task fails allocation => respawn to try again after other tasks deallocate

Test setup: scratch memory size = M * sparse matrix supernode size
= Compare to Intel’s pardiso, sparse matrix N=57k, NNZ=383k, 6662 supernodes
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Summary ) e,
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= |nitial Task-DAG capability
= Portable: CPU and GPU architectures
= Dynamic DAG of heterogeneous tasks
* Hierarchical — thread-team data parallelism within tasks

= Evaluation/improvement underway via sparse matrix factorization mini-app

= |Initial Work-DAG capability
= Portable: CPU and GPU architectures
= Static DAG of work indices for single work function

= Evaluation/improvement underway via sweep particle transport mini-app

= Challenges conquered, esp. for GPU portability and performance
= Non-blocking (non-waiting) tasks =» new respawn pattern
= Lock free, scalable memory pool and scheduler
= GPU __shared__ memory to address non-coherent L1 cache




